Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
iScience ; 27(4): 109577, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38623325

RESUMEN

In vertebrates, retinal neural circuitry for visual perception is organized in specific layers. The outer plexiform layer is the first synaptic region in the visual pathway, where photoreceptor synaptic terminals connect with bipolar and horizontal cell processes. However, molecular mechanisms underlying cone synapse formation to mediate OFF pathways remain unknown. This study reveals that Necl-1/CADM3 is localized at S- and S/M-opsin-containing cones and dendrites of type 4 OFF cone bipolar cells (CBCs). In Necl-1-/- mouse retina, synapses between cones and type 4 OFF CBCs were dislocated, horizontal cell distribution became abnormal, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors were dislocated. Necl-1-/- mice exhibited aberrant short-wavelength-light-elicited signal transmission from cones to OFF CBCs, which was rescued by AMPA receptor potentiator. Additionally, Necl-1-/- mice showed impaired optokinetic responses. These findings suggest that Necl-1 regulates cone synapse formation to mediate OFF cone pathways elicited by short-wavelength light in mouse retina.

2.
iScience ; 27(4): 109380, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38510130

RESUMEN

Primary and secondary cone photoreceptor death in retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP), leads to severe visual impairment and blindness. Although the cone photoreceptor protection in retinal degenerative diseases is crucial for maintaining vision, the underlying molecular mechanisms are unclear. Here, we found that the deubiquitinase Otud7b/Cezanne is predominantly expressed in photoreceptor cells in the retina. We analyzed Otud7b-/- mice, which were subjected to light-induced damage, a dry AMD model, or were mated with an RP mouse model, and observed increased cone photoreceptor degeneration. Using RNA-sequencing and bioinformatics analysis followed by a luciferase reporter assay, we found that Otud7b downregulates NF-κB activity. Furthermore, inhibition of NF-κB attenuated cone photoreceptor degeneration in the light-exposed Otud7b-/- retina and stress-induced neuronal cell death resulting from Otud7b deficiency. Together, our findings suggest that Otud7b protects cone photoreceptors in retinal degenerative diseases by modulating NF-κB activity.

3.
J Biol Chem ; 299(12): 105461, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977220

RESUMEN

Müller glial cells, which are the most predominant glial subtype in the retina, play multiple important roles, including the maintenance of structural integrity, homeostasis, and physiological functions of the retina. We have previously found that the Rax homeoprotein is expressed in postnatal and mature Müller glial cells in the mouse retina. However, the function of Rax in postnatal and mature Müller glial cells remains to be elucidated. In the current study, we first investigated Rax function in retinal development using retroviral lineage analysis and found that Rax controls the specification of late-born retinal cell types, including Müller glial cells in the postnatal retina. We next generated Rax tamoxifen-induced conditional KO (Rax iCKO) mice, where Rax can be depleted in mTFP-labeled Müller glial cells upon tamoxifen treatment, by crossing Raxflox/flox mice with Rlbp1-CreERT2 mice, which we have produced. Immunohistochemical analysis showed a characteristic of reactive gliosis and enhanced gliosis of Müller glial cells in Rax iCKO retinas under normal and stress conditions, respectively. We performed RNA-seq analysis on mTFP-positive cells purified from the Rax iCKO retina and found significantly reduced expression of suppressor of cytokinesignaling-3 (Socs3). Reporter gene assays showed that Rax directly transactivates the Socs3 promoter. We observed decreased expression of Socs3 in Müller glial cells of Rax iCKO retinas by immunostaining. Taken together, the present results suggest that Rax suppresses inflammation in Müller glial cells by transactivating Socs3. This study sheds light on the transcriptional regulatory mechanisms underlying retinal Müller glial cell homeostasis.


Asunto(s)
Células Ependimogliales , Proteínas del Ojo , Proteínas de Homeodominio , Homeostasis , Retina , Factores de Transcripción , Animales , Ratones , Células Ependimogliales/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Gliosis/genética , Gliosis/metabolismo , Gliosis/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Homeostasis/genética , Retina/citología , Retina/crecimiento & desarrollo , Retina/metabolismo , Retina/patología , RNA-Seq , Tamoxifeno/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
4.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37045472

RESUMEN

Old animals display significant alterations in sleep-wake patterns such as increases in sleep fragmentation and sleep propensity. Here, we demonstrated that PR-domain containing protein 13 (Prdm13)+ neurons in the dorsomedial hypothalamus (DMH) are activated during sleep deprivation (SD) in young mice but not in old mice. Chemogenetic inhibition of Prdm13+ neurons in the DMH in young mice promotes increase in sleep attempts during SD, suggesting its involvement in sleep control. Furthermore, DMH-specific Prdm13-knockout (DMH-Prdm13-KO) mice recapitulated age-associated sleep alterations such as sleep fragmentation and increased sleep attempts during SD. These phenotypes were further exacerbated during aging, with increased adiposity and decreased physical activity, resulting in shortened lifespan. Dietary restriction (DR), a well-known anti-aging intervention in diverse organisms, ameliorated age-associated sleep fragmentation and increased sleep attempts during SD, whereas these effects of DR were abrogated in DMH-Prdm13-KO mice. Moreover, overexpression of Prdm13 in the DMH ameliorated increased sleep attempts during SD in old mice. Therefore, maintaining Prdm13 signaling in the DMH might play an important role to control sleep-wake patterns during aging.


Asunto(s)
Hipotálamo , Privación de Sueño , Ratones , Animales , Hipotálamo/metabolismo , Privación de Sueño/metabolismo , Obesidad/metabolismo , Sueño , Dieta , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Neuroscience ; 501: 42-51, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35987428

RESUMEN

In general, catechins contained in green tea are believed to have positive effects on the human body and mental health. The intake of epigallocatechin gallate (EGCG), a major polyphenol in green tea, is known to be effective for retinal protection; however, whether green tea and/or EGCG affect visual function remains unknown. In the present study, we investigated the effect of green tea and EGCG on visual motion processing by measuring optokinetic responses (OKRs) in young adult and aging mice. Young and aging mice (C57BL6/J) were fed a control diet (control) or the test diet, which contained matcha green tea powder or green tea extract (dried sencha green tea infusion), for 1 month, and their OKRs were measured. They were then intraperitoneally administered saline (control) or EGCG, and OKRs were measured. We found that the OKRs of young and aging mice after green tea intake and after EGCG administration showed higher temporal sensitivity than those of control mice. The visual ability to detect moving objects was enhanced in young and aging mice upon intake of green tea or EGCG. From the above results, the visual motion processing for optokinetic responses by ingesting green tea was enhanced, which may be related to the effect of EGCG.


Asunto(s)
Catequina , , Animales , Antioxidantes , Catequina/análogos & derivados , Catequina/farmacología , Humanos , Ratones , Extractos Vegetales/farmacología , Polifenoles , Polvos
8.
J Biol Chem ; 298(9): 102293, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868558

RESUMEN

MicroRNA-124a (miR-124a) is one of the most abundantly expressed microRNAs in the central nervous system and is encoded in mammals by the three genomic loci miR-124a-1/2/3; however, its in vivo roles in neuronal development and function remain ambiguous. In the present study, we investigated the effect of miR-124a loss on neuronal differentiation in mice and in embryonic stem (ES) cells. Since miR-124a-3 exhibits only background expression levels in the brain and we were unable to obtain miR-124a-1/2/3 triple knockout (TKO) mice by mating, we generated and analyzed miR-124a-1/2 double knockout (DKO) mice. We found that these DKO mice exhibit perinatal lethality. RNA-seq analysis demonstrated that the expression levels of proneural and neuronal marker genes were almost unchanged between the control and miR-124a-1/2 DKO brains; however, genes related to neuronal synaptic formation and function were enriched among downregulated genes in the miR-124a-1/2 DKO brain. In addition, we found the transcription regulator Tardbp/TDP-43, loss of which leads to defects in neuronal maturation and function, was inactivated in the miR-124a-1/2 DKO brain. Furthermore, Tardbp knockdown suppressed neurite extension in cultured neuronal cells. We also generated miR-124a-1/2/3 TKO ES cells using CRISPR-Cas9 as an alternative to TKO mice. Phase-contrast microscopic, immunocytochemical, and gene expression analyses showed that miR-124a-1/2/3 TKO ES cell lines were able to differentiate into neurons. Collectively, these results suggest that miR-124a plays a role in neuronal maturation rather than neurogenesis in vivo and advance our understanding of the functional roles of microRNAs in central nervous system development.


Asunto(s)
Proteínas de Unión al ADN , MicroARNs , Neurogénesis , Neuronas , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo
9.
J Biol Chem ; 298(3): 101686, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35131266

RESUMEN

In humans, ciliary dysfunction causes ciliopathies, which present as multiple organ defects, including developmental and sensory abnormalities. Sdccag8 is a centrosomal/basal body protein essential for proper cilia formation. Gene mutations in SDCCAG8 have been found in patients with ciliopathies manifesting a broad spectrum of symptoms, including hypogonadism. Among these mutations, several that are predicted to truncate the SDCCAG8 carboxyl (C) terminus are also associated with such symptoms; however, the underlying mechanisms are poorly understood. In the present study, we identified the Sdccag8 C-terminal region (Sdccag8-C) as a module that interacts with the ciliopathy proteins, Ick/Cilk1 and Mak, which were shown to be essential for the regulation of ciliary protein trafficking and cilia length in mammals in our previous studies. We found that Sdccag8-C is essential for Sdccag8 localization to centrosomes and cilia formation in cultured cells. We then generated a mouse mutant in which Sdccag8-C was truncated (Sdccag8ΔC/ΔC mice) using a CRISPR-mediated stop codon knock-in strategy. In Sdccag8ΔC/ΔC mice, we observed abnormalities in cilia formation and ciliopathy-like organ phenotypes, including cleft palate, polydactyly, retinal degeneration, and cystic kidney, which partially overlapped with those previously observed in Ick- and Mak-deficient mice. Furthermore, Sdccag8ΔC/ΔC mice exhibited a defect in spermatogenesis, which was a previously uncharacterized phenotype of Sdccag8 dysfunction. Together, these results shed light on the molecular and pathological mechanisms underlying ciliopathies observed in patients with SDCCAG8 mutations and may advance our understanding of protein-protein interaction networks involved in cilia development.


Asunto(s)
Autoantígenos , Ciliopatías , Enfermedades Renales Quísticas , Proteínas de Neoplasias , Animales , Autoantígenos/metabolismo , Cuerpos Basales , Cilios/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Femenino , Homeostasis , Humanos , Enfermedades Renales Quísticas/metabolismo , Masculino , Mamíferos , Ratones , Mutación , Proteínas de Neoplasias/metabolismo , Proteínas/metabolismo
10.
Hum Mol Genet ; 31(4): 535-547, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34508581

RESUMEN

Intellectual disability (ID) is a neurodevelopmental disorder affecting approximately 0.5-3% of the population in the developed world. Individuals with ID exhibit deficits in intelligence, impaired adaptive behavior and often visual impairments. Cytoplasmic fragile X mental retardation 1 (FMR1)-interacting protein 2 (CYFIP2) is an interacting partner of the FMR protein, whose loss results in fragile X syndrome, the most common inherited cause of ID. Recently, CYFIP2 variants have been found in patients with early-onset epileptic encephalopathy, developmental delay and ID. Such individuals often exhibit visual impairments; however, the underlying mechanism is poorly understood. In the present study, we investigated the role of Cyfip2 in retinal and visual functions by generating and analyzing Cyfip2 conditional knockout (CKO) mice. While we found no major differences in the layer structures and cell compositions between the control and Cyfip2 CKO retinas, a subset of genes associated with the transporter and channel activities was differentially expressed in Cyfip2 CKO retinas than in the controls. Multi-electrode array recordings showed more sustained and stronger responses to positive flashes of the ON ganglion cells in the Cyfip2 CKO retina than in the controls, although electroretinogram analysis revealed that Cyfip2 deficiency unaffected the photoreceptor and ON bipolar cell functions. Furthermore, analysis of initial and late phase optokinetic responses demonstrated that Cyfip2 deficiency impaired the visual function at the organismal level. Together, our results shed light on the molecular mechanism underlying the visual impairments observed in individuals with CYFIP2 variants and, more generally, in patients with neurodevelopmental disorders, including ID.


Asunto(s)
Síndrome del Cromosoma X Frágil , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Humanos , Discapacidad Intelectual/genética , Ratones , Trastornos del Neurodesarrollo/genética , Células Ganglionares de la Retina/metabolismo , Agudeza Visual
11.
J Clin Invest ; 131(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34730112

RESUMEN

The positive regulatory (PR) domain containing 13 (PRDM13) putative chromatin modifier and transcriptional regulator functions downstream of the transcription factor PTF1A, which controls GABAergic fate in the spinal cord and neurogenesis in the hypothalamus. Here, we report a recessive syndrome associated with PRDM13 mutation. Patients exhibited intellectual disability, ataxia with cerebellar hypoplasia, scoliosis, and delayed puberty with congenital hypogonadotropic hypogonadism (CHH). Expression studies revealed Prdm13/PRDM13 transcripts in the developing hypothalamus and cerebellum in mouse and human. An analysis of hypothalamus and cerebellum development in mice homozygous for a Prdm13 mutant allele revealed a significant reduction in the number of Kisspeptin (Kiss1) neurons in the hypothalamus and PAX2+ progenitors emerging from the cerebellar ventricular zone. The latter was accompanied by ectopic expression of the glutamatergic lineage marker TLX3. Prdm13-deficient mice displayed cerebellar hypoplasia and normal gonadal structure, but delayed pubertal onset. Together, these findings identify PRDM13 as a critical regulator of GABAergic cell fate in the cerebellum and of hypothalamic kisspeptin neuron development, providing a mechanistic explanation for the cooccurrence of CHH and cerebellar hypoplasia in this syndrome. To our knowledge, this is the first evidence linking disrupted PRDM13-mediated regulation of Kiss1 neurons to CHH in humans.


Asunto(s)
Cerebelo/anomalías , N-Metiltransferasa de Histona-Lisina , Hipogonadismo , Hipotálamo/enzimología , Mutación , Malformaciones del Sistema Nervioso , Factores de Transcripción , Animales , Cerebelo/enzimología , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Hipogonadismo/enzimología , Hipogonadismo/genética , Ratones , Ratones Mutantes , Malformaciones del Sistema Nervioso/enzimología , Malformaciones del Sistema Nervioso/genética , Neuronas/enzimología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Exp Eye Res ; 212: 108770, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34562437

RESUMEN

PURPOSE: Cancer-associated retinal ON bipolar cell dysfunction (CARBD), which includes melanoma-associated retinopathy (MAR), has been reported to be caused by autoantibodies against the molecules expressed in ON bipolar cells, including TRPM1. The purpose of this study was to determine the antigenic regions of the autoantibodies against TRPM1 in the sera of CARBD patients, in whom we previously detected anti-TRPM1 autoantibodies. METHODS: The antigenic regions against TRPM1 in the sera of eight CARBD patients were examined by Western blots using HEK293T cells transfected with the plasmids expressing FLAG-tagged TRPM1 fragments. The clinical course of these patients was also documented. RESULTS: The clinical course differed among the patients. The electroretinograms (ERGs) and symptoms were improved in three patients, deteriorated in one patient, remained unchanged for a long time in one patient, and were not followable in three patients. Seven of the eight sera possessed multiple antigenic regions: two sera contained at least four antigen recognition regions, and three sera had at least three regions. The antigen regions were spread over the entire TRPM1 protein: five sera in the N-terminal intracellular domain, six sera in the transmembrane-containing region, and six sera in the C-terminal intracellular domain. No significant relationship was observed between the location of the antigen epitope and the patients' clinical course. CONCLUSIONS: The antigenic regions of anti-TRPM1 autoantibodies in CARBD patients were present not only in the N-terminal intracellular domain, which was reported in an earlier report, but also in the transmembrane-containing region and in the C-terminal intracellular domain. In addition, the antigenic regions for TRPM1 were found to vary among the CARBD patients examined, and most of the sera had multiple antigenic regions.


Asunto(s)
Autoanticuerpos/sangre , Síndromes Paraneoplásicos Oculares/inmunología , Células Bipolares de la Retina/metabolismo , Canales Catiónicos TRPM/inmunología , Anciano , Western Blotting , Electrorretinografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síndromes Paraneoplásicos Oculares/metabolismo , Síndromes Paraneoplásicos Oculares/patología , Células Bipolares de la Retina/patología , Estudios Retrospectivos , Células Tumorales Cultivadas
13.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475267

RESUMEN

In the mature mouse retina, Otx2 is expressed in both retinal pigmented epithelium (RPE) and photoreceptor (PR) cells, and Otx2 knock-out (KO) in the RPE alone results in PR degeneration. To study the cell-autonomous function of OTX2 in PRs, we performed PR-specific Otx2 KO (cKO) in adults. As expected, the protein disappears completely from PR nuclei but is still observed in PR inner and outer segments while its level concomitantly decreases in the RPE, suggesting a transfer of OTX2 from RPE to PRs in response to Otx2 ablation in PRs. The ability of OTX2 to transfer from RPE to PRs was verified by viral expression of tagged-OTX2 in the RPE. Transferred OTX2 distributed across the PR cytoplasm, suggesting functions distinct from nuclear transcription regulation. PR-specific Otx2 cKO did not alter the structure of the retina but impaired the translocation of PR arrestin-1 on illumination changes, making mice photophobic. RNA-seq analyses following Otx2 KO revealed downregulation of genes involved in the cytoskeleton that might account for the arrestin-1 translocation defect, and of genes involved in extracellular matrix (ECM) and signaling factors that may participate in the enhanced transfer of OTX2. Interestingly, several RPE-specific OTX2 target genes involved in melanogenesis were downregulated, lending weight to a decrease of OTX2 levels in the RPE following PR-specific Otx2 cKO. Our study reveals a new role of endogenous OTX2 in PR light adaptation and demonstrates the existence of OTX2 transfer from RPE to PR cells, which is increased on PR-specific Otx2 ablation and might participate in PR neuroprotection.


Asunto(s)
Fotofobia , Degeneración Retiniana , Animales , Ratones , Factores de Transcripción Otx/genética , Células Fotorreceptoras , Retina
14.
J Biochem ; 169(6): 633-642, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-33681987

RESUMEN

Primary cilia are evolutionarily conserved microtubule-based organelles that protrude from the surface of almost all cell types and decode a variety of extracellular stimuli. Ciliary dysfunction causes human diseases named ciliopathies, which span a wide range of symptoms, such as developmental and sensory abnormalities. The assembly, disassembly, maintenance and function of cilia rely on protein transport systems including intraflagellar transport (IFT) and lipidated protein intraflagellar targeting (LIFT). IFT is coordinated by three multisubunit protein complexes with molecular motors along the ciliary axoneme, while LIFT is mediated by specific chaperones that directly recognize lipid chains. Recently, it has become clear that several post-translational modification enzymes play crucial roles in the regulation of IFT and LIFT. Here, we review our current understanding of the roles of these post-translational modification enzymes in the regulation of ciliary protein trafficking as well as their regulatory mechanisms, physiological significance and involvement in human diseases.


Asunto(s)
Cilios/fisiología , Enzimas/metabolismo , Flagelos/fisiología , Proteínas/química , Proteínas/metabolismo , Animales , Transporte Biológico , Humanos , Procesamiento Proteico-Postraduccional
15.
Sci Rep ; 11(1): 4180, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603070

RESUMEN

Establishing correct neuronal cell identity is essential to build intricate neural tissue architecture and acquire precise neural function during vertebrate development. While it is known that transcription factors play important roles in retinal cell differentiation, the contribution of epigenetic factors to establishing cell identity during retinal development remains unclear. We previously reported that Samd7, a rod photoreceptor cell-specific sterile alpha motif (SAM) domain protein, functions as a Polycomb repressive complex 1 component (PRC1) that is essential for establishing rod identity. In the current study, we analyzed a functional role of Samd11, another photoreceptor-enriched SAM-domain protein, in photoreceptor differentiation and maturation. We observed that Samd11 interacts with Phc2 and Samd7, suggesting that Samd11 is a component of PRC1 in photoreceptor cells. We generated Samd11-null allele and established Samd7/11 double knock-out (DKO) mouse. The Samd7/11 DKO retina exhibits shortened photoreceptor outer segments by electron microscopy analysis. Microarray analysis revealed that Samd7/11 DKO up-regulated more retinal genes than Samd7-/- alone, partial functional redundancy of Samd7 and Samd11. Taken together, the current results suggest that Samd7 and Samd11 are PRC1 components and that Samd7 is the major regulator while Samd11 is an accessory factor used for the establishment of precise rod photoreceptor identity.


Asunto(s)
Proteínas del Ojo/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Núcleo Celular/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Complejo Represivo Polycomb 2/metabolismo , Transactivadores/metabolismo
16.
Front Neurosci ; 14: 586013, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335469

RESUMEN

The decline in visual function due to normal aging impacts various aspects of our daily lives. Previous reports suggest that the aging retina exhibits mislocalization of photoreceptor terminals and reduced amplitudes of scotopic and photopic electroretinogram (ERG) responses in mice. These abnormalities are thought to contribute to age-related visual impairment; however, the extent to which visual function is impaired by aging at the organismal level is unclear. In the present study, we focus on the age-related changes of the optokinetic responses (OKRs) in visual processing. Moreover, we investigated the initial and late phases of the OKRs in young adult (2-3 months old) and aging mice (21-24 months old). The initial phase was evaluated by measuring the open-loop eye velocity of OKRs using sinusoidal grating patterns of various spatial frequencies (SFs) and moving at various temporal frequencies (TFs) for 0.5 s. The aging mice exhibited initial OKRs with a spatiotemporal frequency tuning that was slightly different from those in young adult mice. The late-phase OKRs were investigated by measuring the slow-phase velocity of the optokinetic nystagmus evoked by sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that optimal SF and TF in the normal aging mice are both reduced compared with those in young adult mice. In addition, we measured the OKRs of 4.1G-null (4.1G -/-) mice, in which mislocalization of photoreceptor terminals is observed even at the young adult stage. We found that the late phase OKR was significantly impaired in 4.1G - / - mice, which exhibit significantly reduced SF and TF compared with control mice. These OKR abnormalities observed in 4.1G - / - mice resemble the abnormalities found in normal aging mice. This finding suggests that these mice can be useful mouse models for studying the aging of the retinal tissue and declining visual function. Taken together, the current study demonstrates that normal aging deteriorates to visual motion processing for both the initial and late phases of OKRs. Moreover, it implies that the abnormalities of the visual function in the normal aging mice are at least partly due to mislocalization of photoreceptor synapses.

17.
Sci Rep ; 10(1): 21450, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293601

RESUMEN

The fovea is a pit formed in the center of the retina that enables high-acuity vision in certain vertebrate species. While formation of the fovea fascinates many researchers, the molecular mechanisms underlying foveal development are poorly understood. In the current study, we histologically investigated foveal development in zebra finch (Taeniopygia guttata) and found that foveal pit formation begins just before post-hatch day 14 (P14). We next performed RNA-seq analysis to compare gene expression profiles between the central (foveal and parafoveal) and peripheral retina in zebra finch at P14. We found that the Arhgef33 expression is enriched in the middle layer of the inner nuclear layer at the parafovea, suggesting that Arhgef33 is dominantly expressed in Müller glial cells in the developing parafovea. We then performed a pull-down assay using Rhotekin-RBD and observed GEF activity of Arhgef33 against RhoA. We found that overexpression of Arhgef33 in HEK293 cells induces cell contraction and that Arhgef33 expression inhibits neurite extension in Neuro 2A cells, which is partially recovered by a Rho-kinase (ROCK) inhibitor. Taken together, we used zebra finch as a model animal to investigate foveal development and identified Arhgef33 as a candidate protein possibly involved in foveal development through modulating RhoA activity.


Asunto(s)
Proteínas Aviares/genética , Pinzones/crecimiento & desarrollo , Fóvea Central/crecimiento & desarrollo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Animales , Proteínas Aviares/análisis , Proteínas Aviares/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Pinzones/genética , Pinzones/metabolismo , Fóvea Central/metabolismo , Fóvea Central/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Factores de Intercambio de Guanina Nucleótido Rho/análisis , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transcriptoma
18.
J Biol Chem ; 295(38): 13363-13376, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32732286

RESUMEN

ICK (also known as CILK1) is a mitogen-activated protein kinase-like kinase localized at the ciliary tip. Its deficiency is known to result in the elongation of cilia and causes ciliopathies in humans. However, little is known about how ICK is transported to the ciliary tip. We here show that the C-terminal noncatalytic region of ICK interacts with the intraflagellar transport (IFT)-B complex of the IFT machinery and participates in its transport to the ciliary tip. Furthermore, total internal reflection fluorescence microscopy demonstrated that ICK undergoes bidirectional movement within cilia, similarly to IFT particles. Analysis of ICK knockout cells demonstrated that ICK deficiency severely impairs the retrograde trafficking of IFT particles and ciliary G protein-coupled receptors. In addition, we found that in ICK knockout cells, ciliary proteins are accumulated at the bulged ciliary tip, which appeared to be torn off and released into the environment as an extracellular vesicle. The exogenous expression of various ICK constructs in ICK knockout cells indicated that the IFT-dependent transport of ICK, as well as its kinase activity and phosphorylation at the canonical TDY motif, is essential for ICK function. Thus, we unequivocally show that ICK transported to the ciliary tip is required for retrograde ciliary protein trafficking and consequently for normal ciliary function.


Asunto(s)
Cilios/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos , Cilios/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas
19.
Cell Death Dis ; 11(8): 655, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811822

RESUMEN

Brain injury causes serious motor, sensory, and cognitive disabilities. Accumulating evidence has demonstrated that histone deacetylase (HDAC) inhibitors exert neuroprotective effects against various insults to the central nervous system (CNS). In this study, we investigated the effects of the HDAC inhibition on the expression of brain-derived neurotrophic factor (BDNF) and functional recovery after traumatic brain injury (TBI) in mice. Administration of class I HDAC inhibitor increased the number of synaptic boutons in rewiring corticospinal fibers and improved the recovery of motor functions after TBI. Immunohistochemistry results showed that HDAC2 is mainly expressed in the neurons of the mouse spinal cord under normal conditions. After TBI, HDAC2 expression was increased in the spinal cord after 35 days, whereas BDNF expression was decreased after 42 days. Administration of CI-994 increased BDNF expression after TBI. Knockdown of HDAC2 elevated H4K5ac enrichment at the BDNF promoter, which was decreased following TBI. Together, our findings suggest that HDAC inhibition increases expression of neurotrophic factors, and promote neuronal rewiring and functional recovery following TBI.


Asunto(s)
Benzamidas/farmacología , Lesiones Traumáticas del Encéfalo/metabolismo , Fenilendiaminas/farmacología , Animales , Benzamidas/metabolismo , Lesiones Encefálicas/metabolismo , Lesiones Traumáticas del Encéfalo/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Femenino , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Fenilendiaminas/metabolismo , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Médula Espinal/metabolismo
20.
Curr Biol ; 30(12): 2260-2274.e6, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32392470

RESUMEN

Although domesticated goldfish strains exhibit highly diversified phenotypes in morphology, the genetic basis underlying these phenotypes is poorly understood. Here, based on analysis of transposable elements in the allotetraploid goldfish genome, we found that its two subgenomes have evolved asymmetrically since a whole-genome duplication event in the ancestor of goldfish and common carp. We conducted whole-genome sequencing of 27 domesticated goldfish strains and wild goldfish. We identified more than 60 million genetic variations and established a population genetic structure of major goldfish strains. Genome-wide association studies and analysis of strain-specific variants revealed genetic loci associated with several goldfish phenotypes, including dorsal fin loss, long-tail, telescope-eye, albinism, and heart-shaped tail. Our results suggest that accumulated mutations in the asymmetrically evolved subgenomes led to generation of diverse phenotypes in the goldfish domestication history. This study is a key resource for understanding the genetic basis of phenotypic diversity among goldfish strains.


Asunto(s)
Elementos Transponibles de ADN , Domesticación , Duplicación de Gen , Estudio de Asociación del Genoma Completo , Carpa Dorada/genética , Fenotipo , Animales , Evolución Biológica , Carpa Dorada/anatomía & histología , Tetraploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...